3D segmentation of the airway tree using a morphology based method

نویسندگان

  • Benjamin Irving
  • Paul Taylor
  • Andrew Todd-Pokropek
چکیده

Segmentation of the airways is useful for the analysis of airway compression and obstruction caused by pathology. This paper outlines an automatic method for segmentation of the airway tree. This method includes algorithms to detect the trachea, segment the trachea and main bronchi by thresholding and region growing, and segment the remaining bronchi by morphological filtering and reconstruction. Morphological filtering and reconstruction are applied to all slices in the axial, sagittal and coronal planes and are used to extract the smaller airways. Bounded space dilation with a leak removal restriction is applied as a region growing method. This method was evaluated on 20 cases as part of the MICCAI pulmonary image analysis workshop. The mean number of branches detected as a percentage of possible branches was 43.5%, the mean tree length detected as a percentage of the entire tree length was 36.4% and the false positive rate – that is, the percentage of the total volume that was incorrectly segmented – was 1.27%

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intrathoracic Airway Tree Segmentation from CT Images Using a Fuzzy Connectivity Method

Introduction: Virtual bronchoscopy is a reliable and efficient diagnostic method for primary symptoms of lung cancer. The segmentation of airways from CT images is a critical step for numerous virtual bronchoscopy applications. Materials and Methods: To overcome the limitations of the fuzzy connectedness method, the proposed technique, called fuzzy connectivity - fuzzy C-mean (FC-FCM), utilized...

متن کامل

Airway segmentation from 3D chest CT volumes based on volume of interest using gradient vector flow

Some lung diseases are related to bronchial airway structures and morphology. Although airway segmentation from chest CT volumes is an important task in the computer-aided diagnosis and surgery assistance systems for the chest, complete 3-D airway structure segmentation is a quite challenging task due to its complex tree-like structure. In this paper, we propose a new airway segmentation method...

متن کامل

Segmentation of the Airway Tree from Chest CT using Local Volume of Interest

Lung diseases such as COPD and asthma affect airway morphology. Automated segmentation is an essential first step toward the analysis of airways. We propose a fully-automated algorithm to segment the airway tree from chest CT scans. The proposed algorithm requires no manual intervention and uses a 3D region growing based method and allows for accurate detection of leakage by growing regions wit...

متن کامل

Object-Based Classification of UltraCamD Imagery for Identification of Tree Species in the Mixed Planted Forest

This study is a contribution to assess the high resolution digital aerial imagery for semi-automatic analysis of tree species identification. To maximize the benefit of such data, the object-based classification was conducted in a mixed forest plantation. Two subsets of an UltraCam D image were geometrically corrected using aero-triangulation method. Some appropriate transformations were perfor...

متن کامل

A Hybrid 3D Colon Segmentation Method Using Modified Geometric Deformable Models

Introduction: Nowadays virtual colonoscopy has become a reliable and efficient method of detecting primary stages of colon cancer such as polyp detection. One of the most important and crucial stages of virtual colonoscopy is colon segmentation because an incorrect segmentation may lead to a misdiagnosis.  Materials and Methods: In this work, a hybrid method based on Geometric Deformable Models...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009